Do Now:

Using your notes from last night, discuss the continuity of the following functions on the given interval. You may use a calculator, but be sure you could graph each function by hand.
a) $f(x)=x^{2}+1$ on $(-3,3)$
continuous on $(-3,3)$

c) $h(x)=\frac{\sin (x)}{x}$ on $(-\pi, \pi)$ Discontinuity at $x=0$:

- removable (hole)
- $\lim h(x)=1$
$x \rightarrow 0$
- $f(O)$ is undefined
b) $g(x)=\frac{1}{x-2}$ on $(-3,3)$

Discontinuity at $x=2$
non-removoble (Infinite)
$\lim _{x \rightarrow 2} g(x)=D \cap E$

d) $p(x)=\left\{\begin{array}{ll}2 x-4, & x \leq 0 \\ x+1, & x>0\end{array}\right.$ on $(-3,3)$

Discontinuity of $x=0$:

- non-removable (Jump)
- $\lim _{x \rightarrow 0} p(x)=$ DNE

Sample Problems:

1. Discuss the continuity of the given function $f(x)$ on the interval $[-1,3)$. Justify all points of discontinuity using the definition.

$$
f(x)= \begin{cases}x^{2}-1, & -1 \leq x<0 \\ 2 x, & 0<x<1 \\ 1, & x=1 \\ -2 x+4, & 1<x<2 \\ 0, & 2<x<3\end{cases}
$$

$x=0$: non-removable (Jump) $\rightarrow \lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)$ $X=1$: removoble (hole) $\rightarrow \lim _{x \rightarrow 1} f(x)=2 \neq 1=f(1)$

$x=2$: remorable (hole) $\rightarrow \lim _{x \rightarrow 2} f(x)=0$ but $f(2)$ is undefined
2. Discuss the continuity for the Greatest Integer function. Discontinuous at every integer:

For any integer n,
$\left.\begin{array}{l}\lim _{x \rightarrow n^{-}} f(x)=n-1 \\ \lim _{x \rightarrow n^{+}} f(x)=n\end{array}\right\} \lim _{x \rightarrow n} f(x)$ DnE

Continuous for all non-integers:
$\left.\begin{array}{l}\text { For any non-integer, reci number } d, \\ \quad \lim _{x \rightarrow 0} \llbracket x \rrbracket=\llbracket d \rrbracket \\ f(0)=\llbracket d \rrbracket\end{array}\right\} \lim _{x \rightarrow 0} f(x)=f(0)$

3. Show that $f(x)=\left|\frac{x \sin x}{x^{2}+2}\right|$ is continuous.

Let $g(x)=|x|$ and $h(x)=\frac{x \sin x}{x^{2}+2}$. Then, $f(x)=g(h(x))$.
$g(x)$ is continuous on $(-\infty, \infty)$
$h(x)$ is continuous since its the product, quotient and sum of the continuous functions $x, \sin x$, x^{2} and 2 and $x^{2}+2 \neq 0$.
The composition of continuous functions is also
 continuous, so $f(x)$ is continuous.
4. Which of the following points of discontinuity of $f(x)=\frac{x(x-1)(x-2)^{2}(x+1)^{2}(x-3)^{2}}{x(x-1)(x-2)(x+1)^{2}(x-3)^{3}}$ is not removable? Use the definition of continuity to justify the type of discontinuity.
a. $x=-1$ hole
b. $x=0$ hole

$$
F(x)=\frac{(x-2)}{(x-3)}
$$

c. $x=1$ hole
d. $x=2$ hole
(e.) $x=3 \quad$ V.A.
5. Which of the following statements about the function $f(x)=\left\{\begin{array}{ll}2 x, & 0<x<1 \\ 1, & x=1 \\ -x+3, & 1<x<2\end{array}\right.$ is not $D:(0,2)$ true? Use the definition of continuity to identify and classify any discontinuities.
(a.) $f(1)$ does not exist. $F(1)=1 \quad X=1$ removoble (hole) discontinuity
b. $\lim _{x \rightarrow 0^{+}} f(x)$ exists. $\lim _{x \rightarrow 0^{+}} f(x)=2(0)=0 \quad$ True.
$\lim _{x \rightarrow 1} f(x)=2 \neq 1=f(1)$
c. $\lim _{x \rightarrow 2^{-}} f(x)$ exists. $\lim _{x \rightarrow 2^{-}} f(x)=-2+3=1$ True!
d. $\lim _{x \rightarrow 1} f(x)$ exists. $\lim _{x \rightarrow 1^{-}} f(x)=2 \quad \lim _{x \rightarrow 1^{+}} f(x)=2$ True!
e. $\lim _{x \rightarrow 1} f(x) \neq f(1)$ True!
6. On which of the following intervals is $f(x)=\frac{1}{\sqrt{x}}$ not continuous? Why?
a. $(0, \infty)$
(b. $[0, \infty)$
$f(0)$ is undefined
c. $(0,2)$
d. $(1,2)$
e. $[1, \infty)$

