1. Sketch the function $f(x)=\frac{x^{2}-4}{x^{2}+2 x}$ and label any asymptote(s), holes, intercepts.

$$
f(x)=\frac{(x+2)(x-2)}{x(x+2)}=\frac{x-2}{x} \quad \begin{array}{lll}
\text { H.A. } y=1 & \text { Hole }(-2,0) \\
\text { V.A. } x=0 & y \text {-int: none }
\end{array}
$$

a. What is the domain of this function? $(-\infty,-2) \cup(-2,0) \cup(2, \infty)$
b. Where does this function appear to be discontinuous? Why?

$$
x=-2 \text { Hiole } \quad x=0 \text { V.A. }
$$

c. Does a limit exist as x approaches any of the point(s) of discontinuity? Explain!

$$
\text { Yes, } \lim _{x \rightarrow-2^{-}} f(x)=2=\lim _{x \rightarrow-2^{+}} f(x) \Rightarrow \lim _{x \rightarrow-2} f(x)=2
$$

d. List some of the criteria that you think must be met in order for a function to be continuous at a value $x=c .1 . f(c)$ is defined

$$
\text { 2. } \lim _{x \rightarrow c} f(x) \text { exists }
$$

$$
\text { 3. } \lim _{x \rightarrow c} f(x)=f(c)
$$

e. Is this function continuous over its entire domain? Yes, $x=0$ and $x=-2$ are points of discontinuity but thase points cre not in the domain of $f(x)$.
f. Are any of the above discontinuities removable ("fixable" or "repairable")? Explain! Yes, if you make $f(-2)=2$ the function is continuous.
2. What three conditions must be met in order for a function f to be continuous at point c ?

3. Define removable discontinuity. Draw two examples of functions with removable discontinuities.

A discontinuity is removable
if the limit exists but
the function value is undefined or not equal to the limit.

4. Define nonremovable discontinuity. Draw an example of a function with a nonremovable discontinuity.
A discontinuity is non-removable is the function failsto hove a limit at that point.

