Do Now:

The accompanying figure shows the velocity $v=f(t)$ of a particle moving on a coordinate line

a. When does the particle move forward? Move backward?
forward:
$(0,1) \cup(5,7)$ since $v(t)>0$
backwards: $(1,5)$ since $v(t)<0$
b. When is the particle's acceleration positive? Negative? Zero?

$$
a(t)=V^{\prime}(t)
$$

$$
\begin{array}{ll}
a(t)=v^{\prime}(t)>0 & \text { on }(3,6) \\
a(t)=v^{\prime}(t)<0 & \text { on }(0,1) \cup(6,7) \\
a(t)=v^{\prime}(t)=0 & \text { on }(2,3) \cup(7,9)
\end{array}
$$

c. On what interval does the particle move at its greatest speed?

$$
|v(t)| \quad(2,3)
$$

d. When does the particle stand still for more than an instant?

$$
v(t)=0 \quad(7,9)
$$

e. On what interval(s) is the particle's speed increasing? Speed decreasing? Justify your answer.

$$
\begin{gathered}
V(t)+G(t) \\
\text { same sign } \\
(1,2) \cup(5,6)
\end{gathered}
$$

 in sign
$(0,1) \cup(3,5) \cup(6,7)$

Class Work:

1. A particle moves along the x-axis so that at any time $t \geq 0$ its position is given by $x(t)=t^{3}-12 t+5$.
a. Find the velocity and acceleration of the particle at any time t.

$$
\begin{aligned}
& v(t)=3 t^{2}-12 \\
& a(t)=6 t
\end{aligned}
$$

b. Find all values of t for which the particle is at rest.

$$
\begin{aligned}
V(t)=3 t^{2}-12 & =0 \\
t^{2} & =4 \\
t & = \pm 2
\end{aligned} \quad 2 \text { seconds }
$$

c. Find the speed of the particle when its acceleration is zero.

$$
\begin{array}{rlr}
a(t)=6 t & =0 & v(0)=-12 \\
t & =0 & \text { speed at } t=0 \text { is } 12
\end{array}
$$

d. Is the particle moving toward the origin or away from the origin when $t=3$? Justify your answer.
$5(0)=5$
$5(2)=-11$
$s(3)=-4$

$$
v(3)=15 \rightarrow \text { moving right from } S(3)=-4
$$

e. Is the particle's speed increasing or decreasing at $t=3$? Justify your answer.

$$
\left.\begin{array}{l}
V(3)=15 \\
a(3)=18
\end{array}\right\} \text { Same sign/ direction speed is increasing }
$$

2. The accompanying figure shows the velocity $v=\frac{d s}{d t}=f(t)(\mathrm{m} / \mathrm{sec})$ of a body moving along a coordinate line.

a. When does the body reverse direction? Justify your answer.

$$
v(t) \text { changes sign } \rightarrow t=2,7
$$

b. When (approximately) is the body moving at a constant speed? $a(t)=v^{\prime}(t)=0$

$$
(3,6)
$$

c. Graph the body's speed for $0 \leq t \leq 10$ on the graph above in colored pencil.
d. Graph the acceleration (where defined) on the graph above in another color.
e. Is the body's speed increasing or decreasing at $t=1.5$? At $t=5$? At $t=7.5$? Justify your answers.

$$
\begin{aligned}
& t=1.5 \\
& v(1.5)>0 \\
& a(1.5)<0 \\
& \text { decrecsing }
\end{aligned}
$$

$$
t=5
$$

$$
v(5)<0
$$

$$
G(5)=0
$$

neither \rightarrow constant

$$
\begin{aligned}
& t=7.5 \\
& v(7.5)>0 \\
& a(7.5)>0 \\
& \text { increosing }
\end{aligned}
$$

3. On Earth, if you shoot a paper clip 64 ft straight up into the air with a rubber band, the paper clip will be $s(t)=64 t-16 t^{2}$ feet above your hand at $t \mathrm{sec}$ after firing.
a. Find $d s / d t$ and $d^{2} s / d t^{2}$.

$$
\begin{aligned}
& \frac{d s}{d t}=64.32 t \\
& \frac{d^{2} s}{d t^{2}}=-32
\end{aligned}
$$

b. How long does it take the paper clip to reach its maximum height? What is the maximum

$$
\begin{aligned}
& \text { height? } \quad \frac{d s}{d t}=64-32 t=0 \\
& 2 \text { seconds to reach } 64 \mathrm{ft} \\
& t=2 \\
& S(2)=128-64=64
\end{aligned}
$$

c. With what velocity does it leave your hand?

$$
\left.\frac{d s}{d t}\right|_{t=0}=64 \mathrm{ft} / \mathrm{sec}
$$

d. On the moon, the same force will send the paper clip to a height of $m(t)=64 t-2.6 t^{2} \mathrm{ft}$ in t sec. About how long will it take the paper clip to reach its maximum height, and how high will it go?

$$
\begin{aligned}
m^{\prime}(t)=64-5.2 t & =0 \\
64 & =5.2 t \\
t & \approx 12.307 \text { seconds }
\end{aligned}
$$

e. Compare the acceleration on earth to the acceleration on the moon. What does this, in conjunction with your answers to b and d above, tell you about the difference of gravitational forces on Earth and the moon?
C.CCelerction onearth: $-32 \mathrm{ft} / \mathrm{sec}$
acceleration on moon: $-5.2 \mathrm{ft} / \mathrm{sec}$
stronger gravitationd force on earth thon on the moon?

