1. Consider the function $f(x)=\frac{3 x^{2}+6 x}{x^{2}-x}=\frac{3(x+2)}{x-1}$
a. Identify the domain, range, asymptotes, intercepts, and/or holes. Sketch the function.
b. Describe any points of discontinuity in terms of what part of the continuity definition fails.
c. If possible, create a piecewise function that "repairs" any discontinuities in $f(x)$.
$D:(-\infty, 0) \cup(0,1) \cup(1, \infty)$
$B:(-\infty,-6) \cup(-6,3) \cup(3, \infty)$
VA. $\quad X=1$
H.A. $y=3$

Hole $(0,-6)$
x-int: $(-2,0) \quad(0,-6)$
B. $x=0$ Hole (removable)
$\lim f(x)=-6$ but $f(0)$ is $x+0 \quad$ undefined $x=1$ infinite (non-removable)
$\lim _{x \rightarrow 1^{-}} f(x)=-\infty \quad \lim _{x \rightarrow 1^{+}} f(x)=\infty$
C.

$$
\begin{gathered}
g(x)=\left\{\begin{array}{l}
\frac{3 x^{2}+6 x}{x^{2}-x}, x \neq 0 \\
-6, x=0
\end{array}\right. \\
\frac{(x+5)(x-3)}{x-3}=x+5
\end{gathered}
$$

2. What value should be assigned to k so that the function $f(x)=\left\{\begin{array}{ll}\frac{x^{2}+2 x-15}{x-3}, & x \neq 3 \\ k, & x=3\end{array}\right.$ is continuous.

$$
\lim f(x)=x+5=8 \quad f(3)=k
$$

$$
x \rightarrow 3
$$

$$
k=8 \rightarrow \text { since } \lim _{x \rightarrow 3} f(x)=f(3) \text { guarantees }
$$

3. Identify if the equation $e^{-x} \pm x$ has any real solutions. No calculator allowed.
$f(x)=e^{-x}-x \quad$ Since $f(x)$ is the difference of continuous function, $f(x)$
$f(1)=\frac{1}{e}-1<0$
$f(0)=e^{0}=1>0$
is continuous. Since $f(x)$ is continuous and $f(1)<0<f(0)$, by the IVT there exists a value c such that $f(c)=0$.

$$
e^{-c}-c=0 \text { and } e^{-c}=c
$$

4. Given the function $f(x)=\left\{\begin{array}{ll}2 x, & 0<x<1 \\ 1, & x=1 \\ -x+3, & 1<x<2\end{array}\right.$ determine if each the following are true or false.
a. $f(1)$ does not exist
False, $f(1)=1$
b. $f(x)$ is a continuous function

False, $\lim _{x \rightarrow 1} f(x) \neq f(1)$

$$
\lim _{x \rightarrow 1^{-}} f(x)=2 \quad \lim _{x \rightarrow 1^{+}} f(x)=2
$$

5. For each of the following identify points of discontinuity, if any, and the type of discontinuity. Justify your answer using the definition of continuity.

b. $f(x)=\frac{|x-3|}{x-3}$
c. $y=\cot x$

VIA. $X=\pi n, n \in \mathbb{Z}$

Infinite (non-removoble)
 disc. of $X=\pi n, n \in \mathbb{Z}$

$\lim _{x} f(x)$ D NE
$x \rightarrow \pi n$
$\left.\begin{array}{l}f(2)=4 \\ \lim _{x \rightarrow 2^{-}} f(x)=-4 \\ \lim _{x \rightarrow 2^{+}} f(x)=-3\end{array}\right\}$
d. $f(x)=\frac{x+1}{x^{2}-4 x+3}$

VA. $x=1,3$
Infinite(non-removoble) disc. at $x=1,3$
$\lim _{x \rightarrow 1} f(x)$ DNE o $\lim _{x \rightarrow 3} f(x)$ DIE
e. $y=\frac{1}{x^{2}+1}$
$x^{2}+1 \neq 0$
f. $f(x)=\sqrt{2 x+3}$

$$
\begin{aligned}
2 x+3 & \geq 0 \\
x & \geq-\frac{3}{2}
\end{aligned}
$$

f. $f(x)=\sqrt{2 x+3}$
6. Sketch and give the equation of one function that has both a repairable discontinuity at $x=1$ and non-repairable discontinuities at $x=3$ and $x=-1$.

$$
f(x)=\left\{\begin{array}{cc}
2, & x \leq-1 \\
-x, & -1<x<1 \\
x-2, & 1<x \leq 3 \\
2, & x>3
\end{array}\right.
$$

7. Sketch a graph of a function that satisfies the stated conditions. State the domain and range.
I. $\lim _{x \rightarrow 2} f(x)=-1$
II. $\lim _{x \rightarrow 4^{+}} f(x)=-\infty$
III. $\lim _{x \rightarrow 4^{-}} f(x)=\infty$
IV. $\lim _{x \rightarrow \infty} f(x)=\infty$
V. $\lim _{x \rightarrow-\infty} f(x)=2$

$D:(-\infty, 4) \cup(4, \infty)$
$R:(-\infty, \infty)$
$x^{3}-4 x$

8. Given the function $f(x)=\left\{\begin{array}{ll}\left|x^{3}-4 x\right|, & x<1 \\ x^{2}-2 x-2, & x \geq 1\end{array}\right.$, find the right-hand, left-hand and normal limits of f at $x=1$. Discuss the continuity of the function.
$\left.\begin{array}{l}\lim _{x \rightarrow 1^{-}} f(x)=-\left(1^{3}-4(1)\right)=3 \\ \lim _{x \rightarrow 1^{+}} f(x)=1^{2}-2(1)-2=-3\end{array}\right\} \lim _{x \rightarrow 1} f(x)=D N E$
$f(1)=-3$
Since the limit does not exist at $x=1$, the function is not continuous at $x=1$. There is a non-removable, jump discontinuity.
9. Evaluate the following limits:
a. $\lim _{x \rightarrow-\infty} \frac{3+\cos x}{x}=0$
$-1 \leq \cos x \leq 1$
$2 \leqslant 3+\cos x \leqslant 4$

$$
\frac{2}{x} \leqslant \frac{3+\cos x}{x} \leq \frac{4}{x}
$$

b. $\lim _{x \rightarrow-\infty} \frac{e^{\lambda^{x}}}{4+5 e^{3 x}}=0$
$\lim _{x \rightarrow-\infty} \frac{2}{x}=0 \quad \lim _{x \rightarrow-\infty} \frac{4}{x}=0$
d. $\lim _{x \rightarrow \infty} \frac{3 x^{2}-x+1}{x+3}=\infty$
e. $\lim _{x \rightarrow \infty} \cos \left(\frac{1}{x}\right)=1$
f. $\lim _{x \rightarrow \frac{\pi^{+}}{2}} \sec x=-\infty$
$\lim _{x \rightarrow \infty} \frac{1}{x}=0$
e

$$
\frac{3 x^{2 "}}{x}=" 3 x
$$

$$
\lim _{x \rightarrow \infty} \frac{1}{x}=0
$$

c. $\lim _{x \rightarrow \infty} \frac{x-\cos x}{x}=\lim _{x \rightarrow \infty} 1-\frac{\cos x}{x^{\top}}$
$=1-0$
$=1$

Slant Asymptote

h. $\begin{aligned} & \lim _{\theta \rightarrow 0} \frac{2 \theta}{\tan (5 \theta)}= \\ & \lim _{\theta \rightarrow 0} \frac{2 \theta \cos (5 \theta)}{\sin (5 \theta)}= \\ & \lim _{\theta \rightarrow 0} \frac{2 \cos (5 \theta)}{5} \cdot \frac{5 \theta}{\sin (5 \theta)}=\end{aligned}$
$\frac{2(\cos (\theta))}{5} \cdot 1=\frac{2}{5}$
i. $\lim _{x \rightarrow 4} \frac{|x-4|}{x-4}=$ DNE
$\lim _{x \rightarrow 4^{-}} \frac{|x-4|}{x-4}=\lim _{x \rightarrow 4^{-}} \frac{-(x-4)}{x-4}=-1$
$\lim _{x \rightarrow 4^{+}} \frac{|x-4|}{x-4}=\lim _{x \rightarrow 4^{+}} \frac{x-4}{x-4}=1$
H.A. $y=0$
j. $\lim _{x \rightarrow 5} \frac{\sqrt{x+11}-4}{x-5} \cdot \frac{\sqrt{x+11}+4}{\sqrt{x+11}+4}=$
k. $\lim _{x \rightarrow \infty} \frac{4 x+2}{x^{3}}=0$
$\lim _{x \rightarrow 5} \frac{x+11-16}{(x-5)(\sqrt{x}+11+4)}=$
$\lim _{x \rightarrow 5} \frac{1}{\sqrt{x+11}+4}=\frac{1}{\sqrt{16}+4}=\frac{1}{8}$

1. $\lim _{x \rightarrow 0} \frac{\frac{2(x+2)}{2+x}-\frac{1}{2}}{x \cdot 2(x+2)}=$
$\lim _{x \rightarrow 0} \frac{2-x-2}{2 x(x+2)}=$ $\lim _{x \rightarrow 0} \frac{-1}{2(x+2)}=-\frac{1}{4}$
2. The graph of the function $y=\frac{a e^{x}+b}{e^{x}+1}$ is shown below. The graph has horizontal asymptotes at $y=3$ and $y=-5$. What is the value of a and b ?

$$
\underbrace{\lim _{x \rightarrow \infty} \frac{a e^{x}+b}{e^{x}+1}}_{=\frac{a e^{x}}{e^{x}}=3}=3
$$

