Date

Period \qquad

Do you remember the rules for finding the derivative of exponential and natural log functions?

$$
\frac{d}{d x}\left[e^{x}\right]=e^{x} \quad \frac{d}{d x}\left[e^{u}\right]=e^{u} u^{\prime} \quad \frac{d}{d x}[\ln (x)]=\frac{1}{x} \quad \frac{d}{d x}[\ln (u)]=\frac{1}{u} \cdot u^{\prime}=\frac{u^{\prime}}{u}
$$

Find the derivative of each function.

1) $\begin{aligned} & f(x)=e^{5 x^{2}+1} 5 x^{2}+1 \\ & f^{\prime}(x)=e \cdot 10 x\end{aligned}$ $f^{\prime}(x): 10 x e^{5 x^{2}+1}$
2) $y=\ln \left(3 x^{3}+4 x\right)$
$y=\frac{1}{3 x^{3}+4 x}\left(9 x^{2}+4\right)=\frac{9 x^{2}+4}{3 x^{3}+4 x}$
3) $g(x)=e^{\left(3 x^{2}+1\right)^{2}}$

$$
\begin{aligned}
& g^{\prime}(x)=2\left(3 x^{2}+1\right)(6 x) e^{\left(3 x^{2}+1\right)^{2}} \\
& g^{\prime}(x)=12 x\left(3 x^{2}+1\right) e^{\left(3 x^{2}+1\right)^{2}}
\end{aligned}
$$

$$
\text { 4) } p(x)=\ln \left(\frac{5 x^{2}}{3 x+1}\right)
$$

$$
\rho(x)=\ln 5 x^{2}-\ln (3 x+1)
$$

$$
p^{\prime}(x)=\frac{1}{5 x^{2}}(10 x)-\frac{1}{3 x+1}(3)
$$

$$
\rho^{\prime}(x)=\frac{2}{x}-\frac{3}{3 x+1}
$$

5) What is the equation of the tangent line to $y=\ln e^{5 x^{2}}$ at the point where $x=3$?
Slope
$y^{\prime}=\frac{1}{e^{5 x^{2}}}(10 x) e^{5 x^{2}}$
Point
$y(3)=\ln e^{5(3)^{2}}$
Tangent Line
$y^{\prime}=10 x$
$=\ln e^{45}$
$y-45=30(x-3)$
$y^{\prime}(3)=10(3)$

$$
y(3)=45
$$

$$
y^{\prime}(3)=30
$$

$(3,45)$

Practice in your groups:
6) $\frac{d}{d x}\left[e^{\frac{x^{5}}{2}}\right]=\frac{5}{2} x^{4} e^{\frac{x^{5}}{2}}$

$$
=\frac{S_{x}^{4} c^{\frac{x^{5}}{2}}}{2}
$$

$$
\text { 7) } \begin{aligned}
& \frac{d}{d x}\left[\ln \left(4 x^{2}(3 x+2)^{2}\right]=\right. \\
& \frac{d}{d x}\left[\ln 4 x^{2}+\ln (3 x+2)^{2}\right] \\
& \frac{d}{d x}[\ln 4+2 \ln x+2 \ln (3 x+2)]=0+2\left(\frac{1}{x}\right)+2\left(\frac{3}{3 x+2}\right) \\
&=\frac{2}{x}+\frac{6}{3 x+2}
\end{aligned}
$$

8) $\frac{d}{d x}\left[5 x e^{3 x^{5}}\right]=5 e^{3 x^{5}}+5 x\left(15 x^{4}\right) e^{3 x^{5}}$

$$
\begin{aligned}
& =5 e^{3 x^{5}}+75 x^{5} e^{3 x^{5}} \\
& \text { or } \\
& 5 e^{3 x^{5}}\left(1+15 x^{5}\right)
\end{aligned}
$$

$$
\text { 9) } \begin{aligned}
\frac{d}{d x}\left[\ln \left(e^{x^{4}}\right)\right] & =\frac{1}{e^{x^{-4}}}\left(4 x^{3} e^{x^{4}}\right) \\
& =4 x^{3}
\end{aligned}
$$

Or

$$
\frac{d}{d x}\left(x^{4}\right)=4 x^{3}
$$

10) Find the slope of the tangent line to the function at the given point:
a. $f(x)=e^{3 x^{2}}$ at $\left(2, e^{12}\right)$
b. $g(x)=\ln \left(\frac{3 x}{2}\right)$ at $(4, \ln (6))$
$f^{\prime}(x)=6 x e^{3 x^{2}}$

$$
g^{\prime}(x)=\frac{1}{\frac{3 x}{2}} \cdot \frac{3}{2}=\frac{1}{x}
$$

$\begin{aligned} & \text { Slope } \\ & f^{\prime}(2)=6(2) e^{3(2)^{2}} \\ &=12 e^{12} \\ & y-e^{12}=12 e^{12}(x-2)\end{aligned}$
Slope

$$
g^{\prime}(4)=\frac{1}{4} \quad y-\ln (6)=\frac{1}{4}(x-4)
$$

11) Write down the equation of the tangent line to the given function at the given x-coordinate.
a. $h(x)=4 x e^{x^{3}}$ at $x=-2$
b. $p(x)=\ln \left(5 x^{2}+1\right)$ at $x=2$
$h^{\prime}(x)=4 e^{x^{3}}+4 x\left(3 x^{2}\right) e^{x^{3}}$

$$
=4 e^{x^{3}}+12 x^{3} e^{x^{3}}
$$

Slope

$$
p^{\prime}(x): \frac{1}{\sqrt{x^{2}+1}}(10 x)=\frac{10 x}{5 x^{2}+1}
$$

$h^{\prime}(-2)=4 e^{(-2)^{3}}+12(-2)^{3} e^{(-2)^{3}}$
Point
$h(-2)=4(-2) e^{(-1)^{3}}$

$$
\begin{array}{ll}
=4 e^{-8}-96 e^{-8} & =-8 e^{-8} \\
=-92 e^{-8} & \left(-2,-8 e^{-8}\right)
\end{array}
$$

$$
\begin{array}{rlr}
\text { Slope } & \begin{aligned}
& \text { Point } \\
& \rho^{\prime}(2)=\frac{10(2)}{5(2)^{2}+1} p(2)
\end{aligned}=\ln \left(S(2)^{2}+1\right) \\
& =\frac{20}{21} & \\
& & (2,21) \\
Y-21 & =\frac{20}{21}(x-2)
\end{array}
$$

$$
y+8 e^{-8}=-92 e^{-8}(x+2)
$$

