\qquad

Find each:

1. The area of the region enclosed by the graphs of $y=2-x^{2}$ and the line $y=-x$.

$$
\begin{aligned}
A & =\int_{-1}^{2} 2-x^{2}-(-x) d x \\
& =\int_{-1}^{2} 2-x^{2}+x d x \\
& =4 \frac{1}{2} u^{2}
\end{aligned}
$$

2. The area of the region enclosed by the graphs of $y=x^{3}$ and the line $x=y^{2}$.

$$
\begin{aligned}
& A=\int_{0}^{1} \sqrt{x}-x^{3} d x \text { or } \int_{0}^{1} \sqrt[3]{y}-y^{2} d y \\
& =0.41 \overline{6} u^{2}
\end{aligned}
$$

3. The area of the region enclosed by the graphs of $y=12 x^{2}-12 x^{3}$ and the line $y=2 x^{2}-2 x$.
(There are 2 sections. Zoom in on the graph to see them)

$A=\int_{-.16}^{0} 2 x^{2}-2 x-12 x^{2}+12 x^{3} d x+\int_{0}^{1} 12 x^{2}-12 x^{3}-2 x^{2}+2 x d x$
$\approx 1,343 z^{2}$
4. The volume of the solid formed when the graph of the region bounded by $y=e^{x}, x=0, x=2$ and $y=0$ is revolved about the x-axis.

$V=\pi \int_{0}^{2}\left(e^{x}\right)^{2} d x$
$\approx 84.192 u^{3}$
5. The volume when the region R bounded by the function $y=\sin (x), x=0, x=\pi$ and $y=0$ is revolved around the line $x=\pi$.

$V=2 \pi \int_{0}^{\pi}(\pi-x)(\sin x) d x$

6. The volume of the solid formed by revolving the region bounded by $f(x)=3 x^{2}$ and $g(x)=2 x+1$ about the x-axis.

$$
\begin{aligned}
& R=2 x+1-0 \\
& r=3 x^{2}-0
\end{aligned}
$$

$$
\begin{aligned}
& V=\pi \int_{-\frac{1}{3}}^{1}(2 x+1)^{2}-\left(3 x^{2}\right)^{2} d x \\
& \approx \approx 8.440 \mathrm{u}^{3}
\end{aligned}
$$

7. The volume of the solid formed by revolving the region bounded by the graph of $y=x^{3}$ and the line $y=x$, between $x=0$ and $x=1$, about the y-axis.

$$
\begin{array}{ll}
R=\sqrt[3]{y}-0 & V=\pi \int_{0}^{1}(\sqrt[3]{y})^{2}-y^{2} d y \\
r=y-0 & \approx 0.838 \mathrm{u}^{3}
\end{array}
$$

This could also be done using the shell method $V=2 \pi \int_{0}^{1} x\left(x-x^{3}\right) d x$
8. The volume of the solid formed by revolving the region bounded by $y=4 x-x^{2}$ and $y=0$ about the

$$
\begin{array}{r}
R=4 x-x^{2}-0 \quad V=\pi \int_{0}^{4}\left(4 x-x^{2}\right)^{2} d x \\
\approx 107.233 u^{3}
\end{array}
$$

9. The volume of the solid formed by revolving the region bounded by $x=y^{2}+3 y$ and $x=4$ about the line $y=1$.

$$
\begin{aligned}
& V=2 \pi \int_{-4}^{\prime}(1-y)\left(4-y^{2}-3 y\right) d y \\
& \approx 327.249 u^{3}
\end{aligned}
$$

10. The volume of the solid formed by revolving the region bounded by the graph of $f(x)=-3 x^{2}+8$ and $g(x)=3 x^{2}+2$ about the x-axis.

$$
r=3 x^{2}+2-0
$$

$$
\begin{aligned}
V & =\pi \int_{-1}^{1}\left(-3 x^{2}+8\right)^{2}-\left(3 x^{2}+2\right)^{2} d x \\
& \approx 251.327 \mathrm{u}^{3}
\end{aligned}
$$

11. The volume of the solid formed by revolving the region bounded by the graph of $x=3-y^{2}$ and $x=2$ about the line $x=2$.

$V=\pi \int_{-1}^{1}\left(1-y^{2}\right)^{2} d y$
$\approx 3.351 u^{3}$
12. The volume of the solid formed by revolving the region bounded by the graph of $y=3 x+2, y=5$, and $x=0$ about the line $y=5$.

$$
\begin{aligned}
& R=5-(3 x+2) \\
& =3-3 x
\end{aligned}
$$

$$
V=\pi \int_{0}^{1}(3-3 x)^{2} d x
$$

This could also be done using the shell method $V=2 \pi \int_{2}^{5}(5-y)\left(\frac{y-2}{3}\right) d y$
13. Consider the region R bounded by the functions $y=x^{2}-4$ and $y=1$. Sketch the region and indicate points) of intersection. Find the volume generated when R is revolved about:

$$
\begin{array}{ll}
\begin{array}{ll}
\text { a) the line } x=3 & \text { bethe line } x=-4 \\
\text { She } 11 \\
V=2 \pi \int_{-\sqrt{5}}^{\sqrt{5}}(3-x)\left(1-x^{2}+4\right) d x & \text { Shell } \\
\approx 280.993 u^{3} & \approx 2 \pi \int_{-\sqrt{5}}^{\sqrt{5}}(x+4)\left(5-x^{2}\right) d x \\
& \approx 374.657 u^{3}
\end{array}
\end{array}
$$

$$
\begin{array}{ll}
\text { c) the line } y=2 & \text { d) the line } y=1 \\
\text { Washer } & \text { Disk } \\
V=\pi \int_{-\sqrt{5}}^{\sqrt{5}}\left(6-x^{2}\right)^{2}-1^{2} d x & V=\pi \int_{-\sqrt{5}}^{\sqrt{5}}\left(5-x^{2}\right)^{2} d x \\
\approx 280.993 u^{3} & \approx 187.328 u^{3}
\end{array}
$$

14. Find the volume of the following solids formed by revolving the region bounded by $y=e^{-x^{2}}, y=0$, $x=0$, and $x=2$ about the appropriate axis of revolution. Use the integration capabilities of the graphing calculator to find the volume.
$D_{\text {ask }}^{\text {a) } x \text {-axis }} \quad V=\pi \int_{0}^{2}\left(e^{-x^{2}}\right)^{2} d x \approx 1,969 u^{3}$
b) $y=-2$
Washer $V=\pi \int_{0}^{2}\left(e^{-x^{2}}+2\right)^{2}-2^{2} d x \approx 13.053 u^{3}$
c) $x=-2$
Shell $\quad V=2 \pi \int_{0}^{2}(x+2)\left(e^{-x^{2}}\right) d x \approx 14,169 u^{3}$
$\begin{aligned} & \text { d) } x=3 \\ & \text { Shell }\end{aligned} \quad V=2 \pi \int_{0}^{2}(3-x)\left(e^{-x^{2}}\right) d x \approx 13.543 u^{3}$
e) y-axis

Shell $V=2 \pi \int_{0}^{2} x e^{-x^{2}} d x \approx 3,084 u^{3}$

