Do Now: Review of Properties of Exponential and Logarithmic Functions

1. Write $\log _{5} 8$ in terms of natural logarithms. $\log _{5} 8=\frac{\ln 8}{\ln 5}$
2. Write 7^{x} as a power of $e \cdot \quad 7^{x}=e^{\ln 7^{x}}=e^{x \ln 7}$
3. Simplify the expressions using properties of exponents and logarithms.
a. $\ln \left(e^{\tan x}\right)=\tan x$
b. $\begin{aligned} & \log _{2} 8^{x-5}= \\ & \log _{2} 2^{3(x-5)}= \\ & =\end{aligned}$ $3(x-5)$
c. $3 \ln (x)-\ln (3 x)+\ln \left(12 x^{2}\right)$
d. $\ln \left(x^{2}-4\right)-\ln (x+2)=$
$\ln \frac{x^{3}\left(12 x^{2}\right)}{3 x}=$
$\ln 4 x^{4}$
$\ln (x-2)$
4. Expand $\ln \frac{\left(x^{2}+3\right)^{2}}{x \sqrt[3]{x^{2}+1}} \cdot \quad 2 \ln \left(x^{2}+3\right)-\ln x-\frac{1}{3} \ln \left(x^{2}+1\right)$
5. Solve the following equations and leave the answers in exact values.
a. $3^{x}=19$
b. $\log _{2} x=-4$
$X=2^{-4}=\frac{1}{16}$
c. $3^{x+1}=\frac{1}{27}$
$x=\log _{3} 19$
$3^{x+1}=3^{-3}$
$\begin{aligned} \therefore x+1 & =-3 \\ x & =-4\end{aligned}$
6. Sketch $y=e^{x}$ and $y=\ln x$. State the domain and range of each function.

Discuss the relationship between the two graphs. How is this relationship shown graphically?

$y=e^{x}$ and $y=\ln (x)$ are inverse functions.
They are reflected over the line $y=x$.

Class Work:

1. Use the fact that $\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1$ to find $\frac{d}{d x}\left(e^{x}\right)$.

$$
\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h}=\lim _{h \rightarrow 0} \frac{e^{x} e^{h}-e^{x}}{h}=\lim _{h \rightarrow 0} e^{x}\left(\frac{e^{h}-1}{h}\right)=e^{x}(1)=e^{x}
$$

2. Find the derivative of $\frac{d}{d x}\left(a^{x}\right) . \quad a^{x}=e^{\ln a^{x}}=e^{x \ln a}$

$$
\frac{d}{d x}\left(a^{x}\right)=\frac{d}{d x}\left(e^{x \ln a}\right)=e^{x \ln a} \cdot \ln a=e^{\ln c^{x}} \cdot \ln a=a^{x} \ln a
$$

3. Find the derivative of $y=\ln (x) . \Rightarrow e^{y}=x$

$$
\begin{aligned}
& \frac{d}{d x}\left(e^{y}=x\right) \\
& e^{y} \frac{d y}{d x}=1 \\
& \frac{d y}{d x}=\frac{1}{e^{y}}=\frac{1}{x}
\end{aligned}
$$

$$
\frac{d}{d x}(\ln x)=\frac{1}{x}
$$

4. Find the derivative of $\frac{d}{d x}\left(\log _{a} x\right) . \quad \log _{G} x=\frac{\ln x}{\ln a}=\frac{1}{\ln a}(\ln x)$

$$
\frac{d}{d x}\left(\log _{c} x\right)=\frac{d}{d x}\left(\frac{1}{\ln a} \ln x\right)=\frac{1}{\ln a}\left(\frac{1}{x}\right)=\frac{1}{x \ln a}
$$

$$
\frac{d}{d x}\left(\log _{a} x\right)=\frac{1}{x \ln a}
$$

5. Find $\frac{d y}{d x}$ if $y=e^{x+x^{2}}$.

$$
y^{\prime}=e^{x+x^{2}}(1+2 x)=(2 x+1) e^{x+x^{2}}
$$

6. At what point on the graph of the function $y=2^{t}-3$ does the tangent line have slope 21 ?

$$
\begin{array}{lll}
y^{\prime}=2^{+} \ln 2 & 2^{+} \ln 2=21 \\
& 2^{+}=\frac{21}{\ln 2} \\
& \log _{2}\left(\frac{21}{\ln 2}\right)=t & y=2^{\log _{2}\left(\frac{21}{\ln 2}\right)-3=\frac{21}{\ln 2}-3}
\end{array}
$$

7. A line with slope m passes through the origin and is tangent to the graph of $y=\ln x$. What is the value of m ?

$$
y=m x
$$

$$
m=\frac{1}{x}
$$

$$
\begin{aligned}
y=\frac{1}{x}(x)=1 \Rightarrow \quad 1 & =\ln x \\
x & =e
\end{aligned}
$$

$$
m=\frac{1}{e}
$$

8. Find $\frac{d y}{d x}$ if $y=x^{x}$ where $x>0$.

$$
\begin{aligned}
\ln y & =x \ln x \\
\frac{1}{y} y^{\prime} & =\ln x+x\left(\frac{1}{x}\right) \\
y^{\prime} & =y(\ln x+1) \\
y^{\prime} & =x^{x}(\ln x+1)
\end{aligned}
$$

9. Find the derivative of the following functions:
a. $y=e^{\frac{2 x}{3}}$
b. $y=9^{-x}$
c. $y=\ln (8 x)$
d. $y=\log \sqrt{x^{2}-1}$
$y^{\prime}=e^{\frac{2 x}{3}} \cdot \frac{2}{3}$

$$
y^{\prime}=\frac{2}{3} e^{\frac{2 x}{3}}
$$

$y=\frac{1}{2} \log \left(x^{2}-1\right)$
$y^{\prime}=\frac{1}{2 \ln 10\left(x^{2}-1\right)} \cdot 2 x$
$y^{\prime}=\frac{x}{\ln 10\left(x^{2}-1\right)}$
10. The spread of a flu in a certain school is modeled by the equation $P(t)=\frac{100}{1+e^{3-t}}$, where $P(t)$ is the total number of students infected t days after the flu was first noticed. Many of them may already be well again at time t.
a. Estimate the initial numbers of students infected with the flu. $P(0)=\frac{100}{1+e^{3}} \approx 5$ students
b. How fast is the flu spreading after 3 days?
c. When will the flu spread at its maximum rate? What is this rate?
b. $P(t)=100\left(1+e^{3-t}\right)^{-1}$

$$
P^{\prime}(t)=-100\left(1+e_{3-t}^{3-t}\right)^{-2} e^{3+t}(-1)
$$

$$
=\frac{100 e^{3-t}}{\left(1+e^{3-t}\right)^{2}}
$$

$$
p^{\prime}(3) \approx \frac{100 e^{0}}{\left(1+e^{0}\right)^{2}}=\frac{100}{4}=25 \text { students/ dy }
$$

C. max of $P^{\prime}(t) \Rightarrow$
3 days
25 students/doy
11. Show that for a differentiable function u where $u<0, \frac{d}{d x}[\ln |u|]=\frac{u^{\prime}}{u}$. Use this to find the derivative of $y=\ln |\csc x+\cot x|$.
$\frac{d}{d x}(\ln |u|)=\frac{d}{d x}(\ln (-u))=\frac{1}{-u}-u^{\prime}=\frac{u^{\prime}}{u}$
$\frac{d}{d x}(\ln |\csc x+\cot x|)=\frac{1}{\csc x+\cot x} \cdot-\csc x \cot x-\csc ^{2} x=\frac{-\csc x(\cot x+\csc x)}{\csc x+\cot x}=-\csc x$
12. Let $y=\frac{e^{x}+e^{-x}}{2}$.
a. Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$. $\frac{d y}{d x}=\frac{1}{2}\left(e^{x}+e^{-x}(-1)\right)=\frac{1}{2}\left(e^{x}-e^{-x}\right)$

$$
\frac{d^{2} y}{d x^{2}}=\frac{1}{2}\left(e^{x}-e^{-x}(-1)\right)=\frac{1}{2}\left(e^{x}+e^{-x}\right)
$$

b. Find an equation of the line tangent to the curve at $x=1$.

$$
\left.\frac{d y}{d x}\right|_{x=1}=\frac{1}{2}\left(e^{\prime}-e^{-1}\right)=\frac{1}{2}\left(e^{-\frac{1}{e}}\right)=\frac{e^{2}-1}{2 e}
$$

c. Find an equation of the line normal to the curve at $x=1$.
$\left.y\right|_{x=1}=\frac{e+\frac{1}{e}}{2}=\frac{e^{2}+1}{2 e}$
$y-\frac{e^{2}+1}{2 e}=\frac{e^{2} \cdot 1}{2 e}(x-1)$

$$
y-\frac{e^{2}+1}{2 e}=\frac{-2 e}{e^{2}-1}(x-1)
$$

d. Find any points where the tangent line is horizontal.

$$
\begin{align*}
\frac{d y}{d x}=\frac{1}{2}\left(e^{x}-e^{-x}\right) & =0 \\
e^{x}-e^{-x} & =0 \tag{0,1}\\
e^{x} & =e^{-x} \Rightarrow x=0
\end{align*}
$$

13. Find an equation for a line that is normal to the graph of $y=x e^{x}$ and goes through the origin.

$$
\begin{aligned}
y^{\prime}=e^{x}+x e^{x} \\
\left.y^{\prime}\right|_{(0,0)}=e^{0}+0 e^{0}=1 \quad \begin{aligned}
m_{T} & =1 \\
m_{n} & =-1 \\
y-0 & =-1(x-0) \\
y & =-x
\end{aligned}
\end{aligned}
$$

14. At what point on the graph of $y=3^{x}+1$ is the tangent line parallel to the line $y=5 x-1$?

$$
\begin{gathered}
y^{\prime}=3^{x} \ln 3=5 \\
3^{x}=\frac{5}{\ln 3} \\
x=\log _{3} \frac{5}{\ln 3} \\
y=3^{\log _{3} \frac{5}{\ln 3}}+1=\frac{5}{\ln 3}+1
\end{gathered}
$$

$$
\left(\log _{3} \frac{5}{\ln 3}, \frac{5}{\ln 3}+1\right)
$$

15.A line with slope m passes through the origin and is tangent to $y=\ln (2 x)$. What is the value of m ? \square
$y=m x$

$$
y^{\prime}=\frac{1}{2 x} \cdot 2=\frac{1}{x}
$$

$$
m=\frac{1}{x}
$$

$$
y=\frac{1}{x}(x)=1 \Rightarrow \quad 1=\ln (2 x)
$$

$$
x=\frac{e}{2}
$$

$$
m=\frac{1}{x}=\frac{1}{\frac{e}{2}}=\frac{2}{e} \quad m=\frac{2}{e}
$$

16. Find $\frac{d y}{d x}$.

$$
\begin{aligned}
& \text { a. } y=\frac{x \sqrt{x^{2}+1}}{(x+1)^{\frac{2}{3}}} \quad \quad \ln y=\ln x+\frac{1}{2} \ln \left(x^{2}+1\right)-\frac{2}{3} \ln (x+1) \\
& \frac{1}{y \cdot} \cdot \frac{d y}{d x}=\frac{1}{x}+\frac{2 x}{2\left(x^{2}+1\right)}-\frac{2}{3(x+1)} \\
& \frac{d y}{d x}=\frac{x \sqrt{x^{2}+1}}{(x+1)^{2 / 3}}\left(\frac{1}{x}+\frac{x}{x^{2}+1}-\frac{2}{3(x+1)}\right)
\end{aligned}
$$

b. $y=x^{2} e^{x}-x e^{x}$

$$
y^{\prime}=2 x e^{x}+x^{2} e^{x}-e^{x}-x e^{x}=x^{2} e^{x}+x e^{x}-e^{x}
$$

$$
\begin{aligned}
& \text { c. } y=(\sin x)^{x}, 0<x<\frac{\pi}{2} \\
& \ln y=x \ln (\sin x) \\
& \frac{1}{y} \frac{d y}{d x}=\ln (\sin x)+\frac{x}{\sin x} \cdot \cos x \\
& \frac{d y}{d x}=(\sin x)^{x}(\ln (\sin x)+x \cot x)
\end{aligned}
$$

d. $y=(\ln x)^{2}$

$$
y^{\prime}=2 \ln x\left(\frac{1}{x}\right)=\frac{2 \ln x}{x}
$$

f. $y=x^{\ln x}$
$\ln y=\ln x \ln x$
$\frac{d}{d x}\left(\ln y=(\ln x)^{2}\right)$

$$
\frac{1}{y} \frac{d y}{d x}=\frac{2 \ln x}{x}
$$

$$
\frac{d y}{d x}=\frac{2 y \ln x}{x}=\frac{2 x^{\ln x} \ln x}{x}
$$

h. $y=x^{\pi} \quad$ * Power Rule*

$$
y^{\prime}=\pi x^{\pi-1}
$$

e. $y=\log _{5} \sqrt{x}=\frac{1}{2} \log _{5} x$

$$
y^{\prime}=\frac{1}{2 \ln 5 x}=\frac{1}{x \ln 25}
$$

g. $y=3^{\cot x}$

$$
\begin{aligned}
& y^{\prime}=3^{\cot x} \ln 3\left(-\csc ^{2} x\right) \\
& y^{\prime}=3^{\cot x} \ln \left(\frac{1}{3}\right) \csc ^{2} x
\end{aligned}
$$

i. $y=\ln \left(\frac{10}{x}\right)=\ln 10-\ln x$

$$
y^{\prime}=-\frac{1}{x}
$$

$$
\begin{aligned}
& y^{\prime}=9^{-x^{2}} \ln 9 \cdot(-2 x) \\
& y^{\prime}=-2 x \ln 9 \cdot 9^{-x^{2}} \\
& y^{\prime}=x \ln \left(\frac{1}{8}\right) \cdot 9^{-x^{2}}
\end{aligned}
$$

k. $y=\log _{3}(1+x \ln 3)$

$$
\begin{gathered}
y^{\prime}=\frac{1}{(1+x \ln 3) \ln 3} \cdot \ln 3=\frac{1}{1+x \ln 3} \\
y^{\prime}=\frac{1}{1+x \ln 3}
\end{gathered}
$$

1. $y=\ln 2 \cdot \log _{2} x=\ln 2\left(\frac{\ln x}{\ln 2}=\ln x\right.$

$$
y^{\prime}=\frac{1}{x}
$$

