Do Now:

1. Sketch and shade the area bounded by the curves $y=\sqrt{x}$ and $y=x^{2}$. No calculators allowed!
2. Find the intersection of the two curves algebraically.

$$
\begin{array}{ll}
(\sqrt{x})^{2}=\left(x^{2}\right)^{4} & x(1-x)(\underbrace{1+x+x^{2}}_{\text {imaginary roots }})=0 \\
x=x^{4} & x=0 \quad x=1 \quad \\
x-x^{4}=0 & \\
x\left(1-x^{3}\right)=0 &
\end{array}
$$

3. Find the area between the two curves algebraically.

$$
\left.\int_{0}^{1} \sqrt{x} d x-\int_{0}^{1} x^{2} d x=\int_{0}^{1} \sqrt{x}-x^{2} d x=\frac{2}{3} x^{\frac{3}{2}}-\frac{1}{3} x^{3}\right]_{0}^{1}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}
$$

Class Notes:

The area between two curves $f(x)$ and $g(x)$, where $f(x)>g(x)$, that is bounded by the vertical lines $x=a$ and $x=b$ is equal to $\int_{a}^{b} f(x)-g(x) d x$.

Sample Problems:

1. Determine the area of the region bounded by $y=x e^{-x^{2}}, y=x+1, x=2$, and the y-axis.

$$
\begin{aligned}
& \int_{0}^{2} x+1-x e^{-x^{2}} d x\left.=\frac{1}{2} x^{2}+x+\frac{1}{2} e^{-x^{2}}\right]_{0}^{2}= \\
& 2+2+\frac{1}{2} e^{-4}-0-0-\frac{1}{2}=
\end{aligned}
$$

$$
\frac{7}{2}+\frac{1}{2 e^{4}}
$$

$$
\int-x e^{-x^{2}} d x=\frac{1}{2} \int e^{u} d u
$$

$$
\begin{aligned}
& u=-x^{2}=\frac{1}{2} e \\
& \frac{d u}{d x}=-2 x \rightarrow d x=\frac{d u}{-2 x}
\end{aligned}
$$

2. Determine the area of the region bounded by $y=2 x^{2}+10$ and $y=4 x+16$.

$$
\begin{array}{ll}
2 x^{2}+10=4 x+16 \\
2 x^{2}-4 x-6=0 \\
2\left(x^{2}-2 x-3\right)=0 & \\
2(x-3)(x+1)=0 & \int_{-1}^{3} 4 x+16-\left(2 x^{2}+10\right) d x= \\
x=-1 x=3 & \int_{-1}^{3} 4 x+16-2 x^{2}-10 d x= \\
& \int_{-1}-2 x^{2}+4 x+6 d x= \\
& \left.-\frac{2}{3} x^{3}+2 x^{2}+6 x\right]_{-1}^{3}= \\
& -\frac{2}{3}(3)^{3}+2(3)^{2}+6(3)-\left(-\frac{2}{3}(-1)^{3}+2(-1)^{2}+6(-1)\right)=\frac{64}{3}
\end{array}
$$

3. Find the area of the region bounded by $y=\sin (x), y=\cos (x), x=\frac{\pi}{2}$, and $x=0$.

$$
\begin{gathered}
\sin x=\cos x \\
x=\frac{\pi}{4}
\end{gathered}
$$

$\begin{aligned} 2^{\frac{\pi}{4}} \int_{0}^{\cos x-\sin x d x} & =2[\sin x+\cos x]_{0}^{\frac{\pi}{4}} \\ & =2\left(\sin \frac{\pi}{4}+\cos \frac{\pi}{4}-\sin 0-\cos 0\right) \\ & =2\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-0-1\right) \\ & =2\left(\frac{2}{\sqrt{2}}-1\right) \\ & =2\left(\frac{2 \sqrt{2}}{2}-1\right) \\ & =2 \sqrt{2}-2\end{aligned}$

4. Set-up, but do not solve, the integral expression that will find the area of the region

$$
\text { bounded by } y=2 x^{2}+10, y=4 x+16, x=-2 \text {, and } x=5 \text {. }
$$

$A=\int^{1} 2 x^{2}+10-4 x-16 d x+\int_{-2}^{3} 4 x+16-2 x^{2}-10 d x+\int_{3}^{5} 2 x^{2}+10-4 x-16 d x$
$=\int_{-2}^{1} 2 x^{2}-4 x-6 d x+\int_{-2}^{3}-2 x^{2}+4 x+6 d x+\int_{3}^{5} 2 x^{2}-4 x-6 d x$
$=\frac{160}{3}$

$y+1=x$
5. Determine the area of the region enclosed by $x=\frac{1}{2} y^{2}-3$ and $y=x-1$.

$$
\begin{aligned}
& \begin{array}{l}
\frac{1}{2} y^{2}-3=y+1 \\
y^{2}-6=2 y+2 \\
y^{2}-2 y-8=0 \\
(y-4)(y+2)=0 \\
y=4 y=-2
\end{array} \\
& \begin{aligned}
\int_{-2}^{4} y+1-\frac{1}{2} y^{2}+3 d y & =\int_{-2}^{4}-\frac{1}{2} y^{2}+y+4 d y \\
& \left.=-\frac{1}{6} y^{3}+\frac{1}{2} y^{2}+4 y\right]_{-2}^{4} \\
& =\frac{-1}{6}(4)^{3}+\frac{1}{2}(4)^{2}+4(4)+\frac{1}{6}(-2)^{3}-\frac{1}{2}(-2)^{2}-4(-2) \\
& =-\frac{64}{6}+8+16-\frac{8}{6}-2+8 \\
& =\frac{-32}{3}+30-\frac{4}{3}=\frac{-36}{3}+30=-12+30=18
\end{aligned}
\end{aligned}
$$

6. Determine the area bounded by $x=-y^{2}+10$ and $x=(y-2)^{2}$.

$$
\begin{array}{ll}
-y^{2}+10=(y-2)^{2} \\
-y^{2}+10 & =y^{2}-4 y+4 \\
0=2 y^{2}-4 y-6 \\
0=2\left(y^{2}-2 y-3\right) \\
0=2(y-3)(y+1) & \int_{-1}^{-1}-y^{2}+10-(y-2)^{2} d y= \\
y=-1 \quad y=3 & \left.-\frac{2}{3} y^{3}+4 y+6 y^{2}+6 y\right]_{-1}^{3}= \\
& \begin{array}{l}
-\frac{2}{3}(3)^{3}+2(3)^{2}+6(3)+\frac{2}{3}(-1)^{3}-2(-1)^{2}-6(-1)= \\
\\
\\
\\
\\
\\
\frac{64}{3}
\end{array} \\
\end{array}
$$

7. Determine the area bounded by $y=1$ and $y=\cos ^{2}(x)$ on $[0, \pi]$.

$$
\begin{aligned}
& \int_{0}^{\pi} 1-\cos ^{2} x d x=\int_{0}^{\pi} \sin ^{2} x d x=-\frac{1}{2} \int_{0}^{\pi} \cos (2 x)-1 d x \\
&=-\frac{1}{2}\left[\frac{1}{2} \sin (2 x)-x\right]_{0}^{\pi} \\
&=-\frac{1}{2}\left[\frac{1}{2} \sin (2 \pi)-\pi-\frac{1}{2} \sin 0+0\right] \\
&=-\frac{1}{2}\left[\frac{1}{2}(0)-\pi-\frac{1}{2}(0)\right] \\
& \begin{aligned}
\cos (2 x)=\cos ^{2} x \cdot \sin ^{2} x & \\
\begin{array}{ll}
\cos (2 x)=1-2 \sin ^{2} x & \\
\frac{\cos (2 x)-1}{-2}=\sin ^{2} x
\end{array} & \frac{\pi}{2}
\end{aligned}
\end{aligned}
$$

8. Calculator Allowed: Find the positive value of k such that the area of the region enclosed between the graph of $y=k \cos (x)$ and the graph of $y=k x^{2}$ is 2 .

$$
\begin{gathered}
k \cos (x)=k x^{2} \\
k\left(\cos (x)-x^{2}\right)=0 \\
x= \pm .824
\end{gathered}
$$

$$
\begin{gathered}
.824 \\
\int_{-.824} k \cos x-k 24 \\
k x^{2} d x=2 \\
-.824 \\
1.0948 k=2 \\
k=1.827
\end{gathered}
$$

9. If, for all real numbers $x, f(x)=g(x)+5$, then on any closed interval, what is the $[a, b]$ area of the region between the graphs of f and g ?
$f(x) \geq g(x)$

$$
\begin{aligned}
\int_{a}^{b} f(x)-g(x) d x & =\int_{a}^{b} f(x)-(f(x)-5) d x \\
& \left.=\int_{a}^{b} 5 d x=5 x\right]_{a}^{b}=5 b-5 a
\end{aligned}
$$

10. Find the area of the region R in the first quadrant that is bounded above by $y=\sqrt{x}$ and below by the x-axis and the line $y=x-2$ using a single integral and using the geometry of the region.

$$
\left\{\begin{array}{c}
\int_{0}^{y+2=x} y+2-y^{2} d y= \\
\left.\frac{1}{2} y^{2}+2 y-\frac{1}{3} y^{3}\right]_{0}^{2}= \\
\frac{1}{2}(2)^{2}+2(2)-\frac{1}{3}(2)^{3}= \\
2+4-\frac{8}{3}= \\
6-\frac{8}{3}= \\
\frac{10}{3}
\end{array}\right.
$$

11. Show that the area of the region enclosed by the curves $y=\frac{x}{x^{2}+1}$ and $y=m x$, where

$$
\begin{aligned}
\sqrt{\frac{\sqrt{1-m}}{m}} \quad 0<m & <1, \text { is equal to } m-\ln (m)-1 . \\
\int_{0}^{x^{2}+1}-m x d x & =2\left[\frac{1}{2} \ln \left(x^{2}+1\right)-\frac{m}{2} x^{2}\right]_{0}^{\frac{\sqrt{1-m}}{m}} \\
& =\ln \left((\sqrt{1-m})^{2}+1\right)-m\left(\frac{1-m}{m}\right)^{2}-\ln (1) \\
& =\ln \left(\frac{1-m}{m}+1\right)-m\left(\frac{1-m}{m}\right) \\
& =\ln \left(\frac{1-m+m}{m}\right)-1+m \\
& =\ln \left(\frac{1}{m}\right)^{-1+m} \\
& =\ln 1-\ln m-1+m \\
& =m-\ln (m)-1
\end{aligned}
$$

12. The area under the cure $y=e^{x}$ from $x=0$ to $x=k$ is one. Find the value of k.

$$
\begin{aligned}
& \int_{0}^{k} e^{x} d x=1 \\
& \left.e^{x}\right]_{0}^{k}=1 \\
& e^{k}-e^{0}=1 \\
& e^{k}-1=1 \\
& e^{k}=2 \\
& \ln 2=k
\end{aligned}
$$

Directions: Analytically find the area between the two curves. Calculators not allowed! Show all work that leads to your final answer.
13.

$$
\begin{aligned}
\int_{0}^{1} 2 \sqrt{y}-y d y & \left.=\frac{4}{3} y^{3 / 2}-\frac{1}{2} y^{2}\right]_{0}^{1} \\
& =\frac{4}{3}-\frac{1}{2} \\
& =\frac{8}{6}-\frac{3}{6}=\frac{5}{6}
\end{aligned}
$$

14.

16.

$$
\begin{aligned}
\int_{0}^{1} y^{2}-y^{3} d y & =\left[\frac{1}{3} y^{3}-\frac{1}{4} y^{4}\right]_{0}^{1} \\
& =\frac{1}{3}-\frac{1}{4} \\
& =\frac{4}{12}-\frac{3}{12} \\
& =\frac{1}{12}
\end{aligned}
$$

$$
\begin{aligned}
2 \int_{0}^{2} 2 x^{2}-x^{4}+2 x^{2} d x & =2 \int_{0}^{2} 4 x^{2}-x^{4} d x \\
& =2\left[\frac{4}{3} x^{3}-\frac{1}{5} x^{5}\right]_{0}^{2} \\
& =2\left[\frac{4}{3}(2)^{3}-\frac{1}{5}(2)^{5}\right] \\
& =2\left(\frac{32}{3}-\frac{32}{5}\right) \\
& =2\left(\frac{160}{15}-\frac{96}{15}\right)=\frac{128}{15}
\end{aligned}
$$

17.

$$
\begin{aligned}
& 4-x^{2}=-x+2 \\
& 0=x^{2}-x-2 \\
& 0=(x-2)(x+1) \\
& x=-1,+2 \\
& \int_{-2}^{-1}-x+2-4+x^{2} d x+\int_{-1}^{2} 4-x^{2}+x-2 d x+\int_{2}^{3}-x+2-4+x^{2} d x= \\
& \int_{-2}^{-1} x^{2}-x-2 d x+\int_{-1}^{2}-x^{2}+x+2 d x+\int_{2}^{3} x^{2}-x-2 d x= \\
& {\left[\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-2 x\right]_{-2}^{-1}+\left[-\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+2 x\right]_{-1}^{2}+\left[\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-2 x\right]_{2}^{3}=} \\
& \frac{49}{6} \xrightarrow{\prime \prime}
\end{aligned}
$$

18.

$$
\begin{aligned}
& 1 \\
& \int_{0}^{1}-y-\sqrt{y} d y=\quad(y-1)(y-4)=0 \\
& {\left[2 y-1, y y^{4}\right.} \\
& {\left[2 y-\frac{1}{2} y^{2}-\frac{2}{3} y^{3 / 2}\right]_{0}^{1}} \\
& 2-\frac{1}{2}-\frac{2}{3}=\frac{12}{6}-\frac{3}{6}-\frac{4}{6}=\frac{5}{6}
\end{aligned}
$$

